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A mathematical model is analyzed describing the dynamics of the open reaction
+ 8, » S,», catalyzed by the enzvme E(A, B), the two forms of which A and B are

subjected to covalent modification in the cycle AéiXBEE A with the involvement

of the modifier enzymes Ej and Eg. It is assumed in the analysis that B form is
catalytically inactive, that the reagents S; and S, inhibit the inactivating en-
zyme Ep (competitively or noncompetitively with respect to one another), and that
the enzymes A, E4, and Ep may be saturated by their substrates. It is shown that
the reaction = S; » S, under definite conditions represents a nearly ideal gener-
ator of relaxational autocosciilations or a trigger. Asymptotic formulas are de-
rived for the amplitude and period of oscillations of the variables determining
these gquantities with a relative error on the order of several percerntages. On
the basis of the introduced criterion of autogenerator quality the studied reac-
tion is compared with biochemical relaxational autogenerators based on the direct
allosteric regulation of oligomer enzymes E(R, T). This comparison demonstrated
the substantial advantage of z regulator equation based on nonequilibrium cvclic
transitions A=B. compared with eguilibrium transitions of the conformers R=T
of the allecsteric oligomer E(R, T).

In recent years the mechanismu of the cyclic covalent modification of enzymes [1
attracted special interest. This is because the activities of enzymes occupying strat
positions in cellular metabolism, as a rule, are controlied by suc} mechanismc specifi

This is explained by the fact that <he cycle of covalent modification due to the loss
ergy in the recirculation of the ortho form of the enzyme in the ortho - metz - ortho
is capable of providing for a substantialily greater amplification of the signa. _nz;.
mechanism of equilibrium binding [3-¢:. This is apparently whyv weak signals received
the environment by the receptors of cell membranes are amplified by cascades of covealent
modification [1-4].

It may be assumed that the function of amplifying weak signals received by receptc
and circulated in negative feed-back ioops providing for cellular Lomeostazsis is not th
function in cellular organization. Theoretical papers [10-14] have examined different e
of models describing the dynamics of & svstemcontaining cycles of the covalent modification ¢:
enzymes. It was shown that oscillations [12, 13] and trigger phenomena [10, 11, 14] cer

arise in such systems. Insocfar as similar nonlinear phenomena are observed in biochem?

systems without involvement of cycles of covalent modification, it is of interest to
mine the advantages a biochemical svstem acquires upon the transition from direct alloster:iC
regulation to homologous regulation mediated by covalent modification.

The present paper investigateszmathematical model describing the dynamics of an open
reaction, whose enzyme E(A, B) undergoes a cyclic (A=B) covalent modification.

KINET1C MODEL

We shall examine an open enzvmatic reaction
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NS C (1)

B
im wnich the transformation of substrate S, into product S, is catalyzed by the two forms A
327 2 of the enzyme E(A, B), while the interconversion of forms A and B is catalyzed by the
enzvmes of covalent modificationEp and Ej (scheme 1). We make the following assumptions.
l. Form B is catalytically inactive.
2. S, and S, are inhibitors of enzyme Ep; moreover, S
o7 nov with A.

and 5, compete with one another

Z. The total concentration of enzyme E is at least an order of magnitude less than the
ctnientrations of reagents §; and S,, while the total concentrations of Ep and Ep are at least
:n crder of magnitude lower than the total concentration of enzyme E.

<. The rates of the individual stages of scheme (1% can be approximated by the following

v =V, —&S,, v.=—-—1.-2.35,
S 38
v=k4 L, wy=I73 ,
\g 31 s ,3_8
(2)
v 1 A
A=V < < ’
. St S5
Sy A1 — -
(}\4 ) )k 1([[ K£:)
A+B=E,,
‘mere v, and v, are the rates of exchange of S, and S, with the medium, v is the rate of the
. A ; - . . Eg Eq
vezition Sy = Sy vg and vy are the rates of the modification reactions B—A and A —B; E,

<he total concentration of enzvme E; Kg, Ka, and Kp are the Michaelis constants of the en-
zvmas A, E, and Ep; K4, and K;, are the inhibition constants of enzyme Ea; K, and K; are the

~ - , A
2te constants of =S, and 5,==; K is the rate constant of the reaction $§, — S, .

iy
ot

5. The enzymes A, Ep, and Ep are easily saturated by their substrates. This means that
;<< 1, kp/By << 1, Kg/Kj; << 1.

3
N
1y

0. The catalytic activity of the enzymes Ej and Eg is of the same order of magnitude
out is several orders of magnitude lower than the activity of enzyme A, i.e., V4 ~ Vg << kE,.

7. The inhibition of Ep by S, is weak, such that Ki, /Ki, << L.

8. Reaction (1) occurs in medium of ideal mixing under isothermic conditions.
Provided assumptions 1 and 2 are met, reaction (1) is equivalent to the reaction
o~ P
/ ~ ’ \
v, AT N
~ 7 E(AB)

2 < 1

the substrate S, and product S, of which are indirect activators of enzyme E(A, B).
MATHEMATICAL MODEL

Considering the assumptionsmade, the occurrence of reaction (1) in time is described by
the system of equations
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S _ oo }
dt ;
Eli"'vs-UA,
dt

in which S;, S,, and A denote the concentrations of the corresponding substances.

(

)

To facilitate the analysis of system (3), we introduce the dimensionless variables and

parameters:
S, S, A _REY
o= i, 0= o=, T=-—",
! K;, ' ) Kiz ’ Ey ' Ki1
174 . Vi N 19 % _leix
V= RE, Y= TR T kE, Y- N
kK, a kg I kg - kg
TR YT R P T R Ki '
f\"-e - VB VA
E,1=——_'—, 82'—_‘ , r:.'—
A, kK, Vg
In the new variables, system (3) assumes the form
)
dOl [
=Ay. — ®qOy —V
Tk i |
1
eldcg = — %0, + Vor, :
dt
da l—a re }
2 = R - . N )
Codrw g+l —a (%4 T @) (1 + 03+ Gy) \

; ag
where v = L ,
;

%3101

|
|
|
J

v is the dimensionless rate of the reaction S, - S According to the

model (5)

9.

g, <C L. e L], %y, g, HsKL, r~1.

When the first two inequalities o
and a super-fast a. Thus, using

of the behavior of model (5) at s
the quasi-steady state value a

Can

imit transition €, = 0, c¢ne
z-prief times T €,. Established

, determined by the root of the equa

ro

(g +a) (I +o0y+ Gs)

O.

The limit transition €, - 0 reduces system (5) to a second order model

do =
Loy — n1Ty — Y,
dt
do, ~
g, —L =V — %y0y + Vom,
- odt J

where

assumptions made

forego considerat
during these tim
tion

W

!

[

are met, model (5) has a slow variable c,, a fast <:

N



Fig. 1

1. Dependence of relative quasi-steady state concentration a of active form
enzyme E(A, B) upon function of relationship q = (1 + 6, + ¢,)/r, constructed
Tq. (11) for r = 3 and four values of relative Michaelis constants
icated in figure.

=
gQ
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<% o}
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Ay4=Hp

1
o]
3

bl

iz, 2. Stepw1se character of dependence of relative quasi-steady state rate of
reaction V upon concentration of substrate 01 at various concentrations of prod-
:ct ta) and upon concentration of product o, at various values of o, (b). Values
of 0, (a) and o, (b} indicated in figures. Curves constructed using Fqs. (9-11)
0T v,

rg oty

=rp=*y5.== |03 r=3

s = vaiue of the rate v._ Equation (7) determines the major nonline-
: of reaction (1), i.e., the dependence of o upon the relative activity of the enzymes
1 Ea, represented by the function

| 4+ oy 0
r
3 2.3t of this dependence, constructed from the inverse function q(a),
£ %g
£ — l—L. j’
Ry A ( ' 1——0(./ (11)
13 esented in Fig. 1. As apparent from the figure, a plot of the function a(g) at small
. 2nd %5 is of a stepwise character with a steepness

s [ dx — 1
== T (12)
at the point of inflection with coordinates
3 B3
q*%1+73+1"%'376,4 ot 317 ) (13’ 14)
l+‘/_4;1" ,c'fq;cB 123 #pl7g

uactions (12-14) are calculated with consideration of the smallness of the relative Michaelis

constants %. and %5 according to assumption 5. Because of the stepwise character of the func-
tlon a(q) the dependence of the rate V upon ¢, and 0, is also of a stepwise character (Fig.
2). The steepness of the plots of V(g,) and v(oz) at the points of inflection is determined
bv the expressions
- S~ o ~
Sla,= | == ) = TSI, (15)
a0y ; 0_0' (xS +o1)? x5+ Oy
=9y
S = (o) = SE (16)
do, 6226; ®g -t oy
where when xs€0, {assumption 5)
7 1 o v 1l &
=—3S =~—SI;.
Slo, = r by, Sla= r Sk (17, 18)
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Fig. 3. a) Quasi-steady state input characteristics of reaction (1): dependence
of dimensionless rate v upon concentration of substrate o, when conditions (23)
are met at sa==up =us=10"3 r = 3, %=1 Vop = 1. b) Discontinuous limit

cycle C [heavy line (ab’ ba )] encompassing hysteretic region of input character-
istic curve v(g,). a and b are points of discontinuity, while a' and b' are
points of decline in the representative point (o,, v). The regions ab' and ba'
are jumps in rate, while the regions a'a and b'b are intervals of slow quasi-
steady state drift in the representative point. The curve v(ol) is constructed
for values of parameters indicated for the left plot. Cycle C corresponds to the

regimen of autooscillations in which €, and €, = O.
The coordlnates of the inflection points of the curves V(o;) and V(o,) are determined in -erns
of ¢ and o by the expressions
a=rg—1—g, v =a, 8y
a=r¢—1—0o, V=da. .

The linear shift to the left of the abscissa of the inflection point 02 of the plot of
with increase in o, with an unaltered ordinate of this point V¥ creates a linear depende
of the unstable quasi-steady state rate v upon the concentration o, (see Fig. 3a) and ma

it possible to approximate with high precision model (8) with a much simpler piecewise
model.

In spite of the exclusion of the super-fast variable ¢, model (8) still contains tre
variable o,, the rate of change of which is ~1/e, times greater than the rate of change
;. This makes it possible to complete still another Zimit transition e, - 0, reducing
to a first order model

P

="Vim — ®0; — NV,

(‘:

16y

[ohs

n—

. . &, & . . N 1 . . . -
in which v is the value of v satisfying the condition of quasi-steady state for o,:

do, o}
gy —= =V {0}, Gg) — RyTy + Vom = 0. 20
dv
This equation is equivalent to the system
]l —a o 1
q — — =0,
ny+l—a %gqt+a
— ¥ On':—’\’zm—os ; :3)
ao
s |
’ASTG1 J
which when o, = const may have from one to three positive roots determining the values ¢’
Thanks to this, the quasi-steady state input characteristic of reaction (1) — the depender <=
of v upon 0, — is of a hysteretic character (Fig. 3a). This nonlinearity of the functic-
v(o ) has the result that under sD cific conditions (Fig. 4) relawational autooscollaticns
appear in reaction (1) (Fig. 5). When e, << ¢, << 1 such oscillations in the plane (r..
correspond to the discontinuocus limit cvcle C, shown in Fig. 3b (cvcle ab'ba').

1270



T

2,0+ 7
2
[7 ’ ] + n
7 v E} Z’U!—

71 1 I I
' 10
S
, 7J0 ! _ZLO OM .
P Z 4 6

Fig. 4 Fig. 5
Fig. 4. Parametric portrait of model (5). 1In region 1 reaction (1) has a single
instable steady state and a single discontinuous limit cycle. In region 2 reac-
tion (1) represents a trigger with two stable steady states. In regions 3 and 4 the re~

1

action has a single stable state in which v =0 (region 3) or vz 1 (region 4).

fu

Autooscillations of variables of model (5) at parameter values corre-

Fig. 3

sponding to region © in Fig. 4. Curves obtained by numerical integration (5) by
Calanan method of fsurth order precision [15] with precision of integration at
stap = 1074, £, T 5, = 1073, wa=xp=10"% %,=0, vin=03 o=vim=1 p = 3,

Thus, Jepending upon the desired precision of description of the behavior at super-brief
zn? brief *imes, reaction (1) can be represented either by the initial third order model (5),
b z second order model (8), or, finallv, by a first order model (21). This latter model
Zes it possible to obtain approximate analytical expressions for the amplitudes and period
relaxational oscillation of variables.

APPROXIMATE FORMULAS FOR AMPLITUDES OF RELAXATIONAL OSCILLATIONS

Model (21) still contains two small parameters x, and ¥s upon which the solution of sys-
z2n ¢23) and the form of the characteristic curve v(o-) depend (Fig. 3a). The smallness of
. and %, makes it possible to obtain approximate expressiocns for the coordinates of the ex-
_r2ma of the characteristic curve v(o,) (points a and b in Fig. 3b) and for the coupled coor-
dinates of the so-called '"decline points" (points a' and b' in Fig. 3b).

9)

o
-h Ay e

Regiors of rapid movement ab' and ba' along the limit cycle C surrounding the hysteretic
. - . . ~ . . .
region of the characteristic curve v(o,) terminate at the decline points.

[

We note that functien (11) is the product of two hyvperbolic functions such that

EMwhen a,-»O, (24)
g+
l+xg—a
> = wh -1,
= i 0 (25)

From which there follow the two asymptotics for a:

a=—"4 3.0, (26)
| +xg—gq !
~ 1 — (1= ~
== +%B ( KA)Q , G- 1. (27)
1*(1_*_”,4)“/

Ignoring we< in the expression for v, Eg. (9), we obtain the two asymptotics of the vari-

(s 1
and of Eq. (22)

(140, +05) %4 = %40, +\‘im_?:o, a_*o' (28)
r(l 4 np) —1 —0,—0,
P14 — (1 +) (L4 0y + )

e X Ty vy =0, a—1. 29
F— (U4 2y (L + o o) : (29)




The solution of these quadratic equations for o, makes it possible to determine approxi-
mate express1ons for the values of the variables o,, o0,, and v at the four points of the cycjg
a, b', b, and a' shown in Fig. 3b:

rng—1 Vom — ¥4 %10 .
B 2m -
Oy == - ’ \.")
2a 2 + 2%, ) \)
— Vo / rxAx R
cm— —’rms—l“?‘ (31)
Ko
Nig = Hg02a — Vam, (2
P T+ vy, . L ay—r/xy
= 2%, 2 ’ €23)

r
Tip = — i~ 1/ e S
%4 Ko Ho¥
Vp = HgUsp — Vom L 23)
o e —1 +v2m—xA a, R, 25)
g = —_ _ 20
’ 2 2%, 2 2%,
Vg == %aOza- ~—Namy (27
. P — v, 1~a,—rix Ry, %)
T ey, 2 Yoou,
Ny == HoOohs — Vom, £39)
where
vie =1 2%g, w®a=1-174,
Ro=1 vy, — 14 % (1 + 05— rra)}® —4rugx,,
R‘::], E?ﬁ,q——'\":_,m—x:(r%B_l—Gl/))]_‘—
— 4'/-: Vo (pr —1— Glb) -+ %a (1 =+ Glb)]-

The coordinates of points a and b are determined from the conditions of the multiplicity =2
the roots of Eqs. (28) and (29). The amplitudes of the oscillations of the variables are
calculated from the obtzined coordinates

Ao =04—0u, -7
‘462: Oop—0247,

A.\. = Vs — Vgr. SRR

(.2

ASYMPTOTIC FORMULAS FOR THE OSCILLATION PERIOD

As apparent from Fig. 3b, cords bb' and a'a run very close to analogous contracted re-
gions of slow drift in the characteristic curve v(o ). This makes it possible to approximele
these regions with the cords and to reduce the problem of calculating the period of osci_-z-
tions 1, in model (21) to the integral

_ ¢ do; .
g = \ = s R
E: Vim ™ 10 —w (01)
taken from the closed contour C, formed by the rectangle ab'ba' (Fig. 3b). Omitting the It~

termediate calculations, we obtain the following expression for the period

1T779
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Fig. 6. Comparison of oscillation period T, obtained by
direct integration of model (5) (circles) with period cal-
culated from asymptotic Eq. (4).

Fig. 7. Quasi-steady state input charactaristics of reac-
tion J(g,) constructed for initial model (1) (curve 1), for
noncompetitive inhibition of enzyme E4 by reagents S. and
S, (curve 2), and in absence of inhibition of Ep by sub-
strate S. (curve 3). Curves constructed by numerical solu-
tion of system (23) in which g was defined by Egs. (10),
(51), and (52) — curves 1, 2, and 3, respectively. Param-
eter values: #a=xp=unsg=10-3 r=3 ,

22
rs a1 —Vym / g2 — Vim
G,, + g
1 1a r
__1ﬁi %y -2 (44)
Ty == 1ili ’
4 — Vim L2 Vim
!
a T, —
wa T o 2,
where
Ny Yo —vy
cCl - Alv CCQ = ’
%1 %1 NFERP

Q) == Vg — Qy01g, Q= Vg— XUa.

To estimate the precision with which Eq. (43) defines the period of relaxational fluctuations
cof the initial model (5), the period of the established fluctuations in this model at various
values of the parameters v,; and %. was compared with the period calculated from Eq. (44).

To do this model (5) was integrated numerically by Calahan's fourth order method [15] for the
sclution of rigorous systems of differential equations. The selection of this method was
conditioned by the fact that the rigidity of model (5) at the parameter values used in the
computational experiments comprised ~10°%. The stepwise relative error of integration was
taken as 107*. The period was caiculated in the course of integration with the same error.
The results of the comparison of the quantities obtained by the numerical integration of
model (5) and by Eq. (44) are presented in Fig. 6 and in Table 1.

It follows from this comparison that the asymptotic Eq. (44) at small values of the
parameters €;, €,, x4 %z and %s gives T, values somewhat smaller (by several percentages)
compared with those obtained by the direct integration of model (5).

In the special case of % =0 instead of the cumbersome Eq. (44) it is more convenient
to use the much simpler equation

Ay A

0,

To="=
(Vg — vlm) (vlm -

T (45)

St

This equation, obtained bz apgroximation of the regions of slow movement of the characteristic
curve Y(o;) by the lines v = vy(o;, < o0,,) and has about the same precision

—

§;=§;(ﬂ.;26m),
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TABLE 1. Comparison of Experimental Values and Period of
Oscillations (Tqy, 7o) of Model (5) Determined by Numerical
Integration and by Asymptotic Formulas

ical integration of Calculation from asymptotic  |Relative er-
‘;21,2‘;25 ey et | formulas (31, 34, 44) o,
o 8, %
ter M Usmax{ %% min . TON Olg 91 To
1,0 0.909 0,1005 3315 0,891 0,109 3,314 —0,1
1,1 1.005 0,271 3.015 0,987 0,286 2,981 —1.1
1,2 1,085 0,417 0754 1,067 0,433 2,704 —1.8
1,3 1,154 0,540 2533 1,135 0,557 2,47 —25
1.4 1,213 " 0,646 2345 1,193 0.664 2,272 —3.1
1,5 1.264 0,738 2184 1,244 0,756 2,100 —38
1,6 1.309 0,818 2043 1,289 0.836 1,950 —4.6
1,7 1,920 1,328 0,907 1,819 —5.3

1,348 0,888

Note. Integration performed by Calahan's method of fourth

order precision [15] with integration precision per step of

<<107% at g, = g, = 1073; %y = 03 vip = 0.5  wa=sp=xg =

1073, r = 3, v,p = 1.
as Eq. (44), so long as the small parameters of model (5) are in fact small. Equation (45)
within the lim#t of x.~=%z—>0 assumes the verv simple form

or in dimensional form

K;, (REo) ,
kaK;’; (REq —Vy) ’ Rl

~1
—

This Eq. (46) also introduces a marked errcr, predicting (at the parameter values presented
in Table 1) a roughly 20% larger pe-io an the true period. However, such an error is mcre
than compensated for by the great simplicity of Eq. (46), permitting the rapid estimation cf
the magnitude of T, or T,.

ASSESSHENT OF QUALITY OF ATUOGENERATOR

[
As apparent from the familvy of input characteristic curves v(c¢.} in Fig. 3, the form cf
this characteristic curve is close to the ideal hysteretic nonlenearitw used in electronic

1
I
3
0

systems to generate relaxational oscillations and create trigger rerim

azational autogenerztor

In order to estimate the similarity of scheme (1) to the ideal rel
icient of quality

and to be able to compate it to other schemes, we introduce the coeff
Ke=U,Us {ue)

as the product of the coefficient of instability (Uy,) and the coefficient of substrate utili-
zation (Ug), defined by the relaticnships

[

LN

= A0V, Ue=A/S gy

Here Av is the interval of unstable values ¢of the reaction rate, V is the maximum reaction
rate, Ag and Sp,y are the amplitude and maximum of the substrate concentration in the estab-
lished oscillatory regimen. By definition all coefficients are postiive and do not exceed
unity. Only in the ideal case Kg = Ky = Kg = 1.

Mechanism (1) at the small parameter values indicated in Fig. 3z heas

G,.—0
Lo, =1 Ko=Uls =077

Olﬂ

Uv =~y —"q

)
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Such high quality of scheme (1) is inaccessible for the hcmclogous mechanism of direct allo-
steric activation of the enzyme F(R, T) by product [16] — theoretically it might be sbtained
onlv when the activating centers number ~500. A much lower quality of Kg = 0.23-C.3 is pos-
sible for the more widespread case of direct allosteric regulation of the tetrameric enzyme

with four or eight activating centers.

For a comparison of scheme (1) with its possible variants, Fig. 7 presents in addition

) - - a8 . . .
to the characteristic curve v(ol) of this scheme (curve 1) the analogous characteristic curves
for its two modifications (curves 2 and 3).

The characteristic curve presented by curve 2 in Fig. 7 is constructed for the case of
the noncompetitive inhibition of enzyme Ep by reagents S, and S,. In this case the ratio
function in models (8) and (21) has the form

g=(1+0,)+0.);r, (51)

wnile the coefficient of quality with other conditions equal is markedly higher: Kg = 0.85.
The attainment of such quality by the mechanism of direct allosteric regulation [16] would
require a fantastic number of activating centers n, ~ 10°.

Curve 3 in Fig.

7 presents a case of the absence of inhibition of Ep by substrate S,
{indirect activation of

T
E(A, B) by substrate S, is abgent). In this case the ratio function”

g=(1+0,)/r (52)
znc the coefficient of quality compared with the base-line model is sharply reduced at Kg =
9.08. The scheme of indirect activation of E(4, B) by product S described by Martiel and
Goldbeter {13] has tne same low quality (KQ < 0.10). In this scheme a quadratic product of
aczivation of Ep is used instead of the inhibition ef Ej, and the indirect activation by sub-
strate 5. is ignored.

Thus, in the absence of indirect substrate activation, mechanism (1) does not realize
the potentials offered by a cycle of enzyme covalent medification, i.e., its quality is much
lower than in the mechanism of reaction with direct product activation of an allosteric

tetramer (KQ = 0,23},

It is interesting to note that the possible ancient svclutionarv precursor of mechanism

{1) — a reaction with the isosteric product activaticn of an oligomeric enzvme [16] with pro-
tomers numbering n = 4 — has a very low quality Xg = 0.CS.
DISCUSSION

Thus, analysis of reaction (1) with an indirect product activation of the enzyme E(A, B)
by both reagents permits an unambigucus answer to the question raised in the introduction
concerning the possible advantages of mechanism (1) compared with the homologous mechanism
of direct allosteric regulation of the oligomer E(R, T) [16].

The main advantage amounts to a sharp increase in the quality of the autogenerator KQ
after replacement of the mechanism of direct allosteric regulation of the oligomeric enzyme
E(R, T) [16] by a mechanism of indirect regulation mediated by the cycle of covalent modifi-
cation A==B of enzyme E(A, B). The increase in quality from Ko = 0.23 ... 0.3 to Kq =
0.77 ... 0.85 occuring after this substitution is equivalent to an increase by two orders of
magnitude in the number of allosteric activating centers n in the oligomer E(R, T), replac-
ing E(A, B) with a retention of quality. At the same time a high quality is attained in
mechanism (1) only during the combined inhibitory competitive (Kq = 0.77) or noncompetitive
(kQ = 0.85) action of both reagents on the inactivating énzyme Ep. And although the inhibi-
tory action of S, on Ej is not necessary for the generation of autooscillation and trigger
regimens, its exception (Kj; + =) leads to the loss of the main advantage of mechanism (1):
The quality is lower (KQ = 0.08) than in the homologous mechanism of reaction catalyzed by
the tetramer E(R, T) (KQ 0.23).

Another advantage of mechanism (1), based on covalent modification, is the fact that
enzymes providing the simplest hyperbolic kinetics can be used as E(A, B), Ep, and Ep for the

“In case (52) Kg should everywhere replace Kj, in the expression for dimensionless parameters
(4). Therefore, in particular, =s=l
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physical realization of this mechanism. In other words, these enzymes do not necessarily
have to be oligomers consisting of a large number of subunits or oligomers at all. This
property of mechanism (1) may be extremely important when it is used as part of a biotechno-
logical device based on the enzyme immobilization, as enzymes lacking a complex labile qua-
ternary structure should be much more stable than subunit enzymes.

Mechanism (1), of course, has its faults. First, this mechanism is more complex — it
involves at least three enzymes (E(A, B), Ep and Eg) instead of the one E(R, T) in the allo-
steric homologue [16]. Second, the energy dissipated in the A==B.cycle must be expended for
the regulation of E(A, B). By Stadtman's estimation [1], a significant fraction of the ATP
flux generated by the energy metabolism of Escherichia coli is expended for the covalent
modification of glutamine synthetase. And, finally, in mechanims (1) hierarchical relation-
ships between enzyme concentrations (assumption 3) must be observed to ensure a high quality.
And although a hierarchy of enzyme concentrations is in fact observed in the cascade control-
ling theglycogen cycle [17], the realization of this hierarchy requires special and, possibly,
complex mechanisms regulating the svnthesis and breakdown of enzymes.

In conclusion it should be noted that mechanism (1) belongs to a broad class of polyenzy-
matic systems whose regulation is based on the recirculation of matter in closed catalytic
cycles. Coenzyme pairs such as ATP/ADY, NADY/NADH, NADP'/NADPH, acetyl-CoA/CoA, etc., that
are mathematicallly equivalent to enzymes, can act in place of enzymes as A/B forms in polven-
zymatic systems. An analogue of Eq. (7) can be written for each such pair (assuming a low
rate of flux through the A=B cycle compared with the rates of A=B exchange). In this
case, as shown in their time by specizl investigations [18, 19], stoichiometric A=B cycles
incorporated in a system of stoichiometric connections of polyenzymatic systems may be respon-
sible for a multitude of diverse nonlinear phenomena: the stepwise or hysteretic dependence of
of the reaction rate upon substrate or coenzyme concentration, relaxational oscillations and
trigger transitions, and the stabilizztion of coenzyme concentrations. And just as the balance
between A and B defined by Eq. (7) gives rise in reaction (1) to a stepwise dependence of the
relative concentration A(c) upon the relative enzyme activity Ep/Ep(¢), an analogous stepwise
dependence arises in polyenzymatic svstems: for example, the relative concentraticn of ATP
(a3) or its equivalent, the energy charge ¢= (ATP+0.5ADP)/(AMP~ADP-+ATP) is dependent in
a stepwise manner upon the relative activity of ATPase [18]. In both mechanism (1) and in
polyenzymatic systems the insertion c¢f the cycle A=B into a positive feedback loop gives
rise to hysteresis, autooscillations, and triger phenomena [18, 19].
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